The Lubin-Tate theory for formal power series fields with finite coefficient fields
نویسندگان
چکیده
منابع مشابه
HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملThe Universality of Formal Power Series Fields*
In a recent paper,f André Gleyzal has constructed ordered fields consisting of certain "transfinite real numbers" and has established the interesting result that any ordered field can be considered as a subfield of one of these transfinite fields. These fields prove to be identical with fields of formal power series in which the exponents are allowed to range over a suitable ordered abelian gro...
متن کاملLubin-Tate Theory
Motivation: We seek to understand the stable homotopy category by understanding the structure of the moduli stack of formal groups. Over algebraically closed fields, this is straightforward. If char(k) = 0, every formal group law is isomorphic to the additive one and we’ve described the group of automorphisms (coordinates changes) before. If char(k) = p > 0 every formal group law is classified ...
متن کاملLubin-Tate Formal Groups and Local Class Field Theory
The goal of local class field theory is to classify abelian Galois extensions of a local field K. Several definitions of local fields are in use. In this thesis, local fields, which will be defined explicitly in Section 2, are fields that are complete with respect to a discrete valuation and have a finite residue field. A prototypical first example is Qp, the completion of Q with respect to the...
متن کاملhypertranscendental formal power series over fields of positive characteristic
let $k$ be a field of characteristic$p>0$, $k[[x]]$, the ring of formal power series over $ k$,$k((x))$, the quotient field of $ k[[x]]$, and $ k(x)$ the fieldof rational functions over $k$. we shall give somecharacterizations of an algebraic function $fin k((x))$ over $k$.let $l$ be a field of characteristic zero. the power series $finl[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1984
ISSN: 0022-314X
DOI: 10.1016/0022-314x(84)90069-6